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A Lattice Model for Option Pricing Under GARCH-Jump Processes 

ABSTRACT 

This study posits a need for an innovative discrete-time lattice model This study 
integrates the GARCH option pricing tree of Ritchken and Trevor (1999) and the 
jump-diffusion option pricing tree of Amin (1993) to obtain a new discrete-time lattice 
model to value options in circumstances where when the underlying processing of 
value options follows a mixture of a GARCH and a discontinuous jump process. In this 
regard, Ritchken and Trevor’s (1999) Garch option pricing tree demonstrably proves 
complementary to the function of Amin’s (1993) jump diffusion pricing tree. Moreover, 
this The assumption of a GARCH-jump model provides a better description for the 
underlying process given its consistentcy with the empirical results,; in which the 
discontinuities in the sample path of financial assets are found even after allowing for 
conditional heteroskedasticity. The lattice model can also adapt to the Duan, Ritchken, 
and Sun’s (2006) GARCH-jump model in pricing American- style options,. and 
tFurthermore, the Amin (1993), the Ritchken and Trevor (1999), the Cox, Ross, and 
Rubinstein (1979), and along with the Kamrad and Ritchken’s (1991) models, are 
nested to interwoven with our generalized lattice model. Numerical results of our 
model Our numerical results are consistent with the results of the Monte Carlo 
simulations for pricing European options under the GARCH-jump process. For With 
respect to American options, our results illustrate data indicates that the early 
exerciseearly-exercise premium decreases with the increases of the jump intensity, or 
the mean of the jump magnitude. In addition, the results for the implied volatility show 
that the generalized model can capture the volatility smile as well as and the term 
structure of volatility effects observed in options markets. 

Keywords: GARCH option model, jump-diffusion option model, GARCH-jump 
option model, lattice model 
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A Lattice Model for Option Pricing Under GARCH-Jump Processes 

I. INTRODUCTION 

The stochastic process nature of stock prices is a crucial issue of pivotal 

importance for option valuations. Conventional assumptions have treated this diffusion 

process as continuousStock prices are conventionally assumed to follow a diffusion 

process with continuous path. For example, tThe seminal Black-Scholes (1973) option 

pricing model assumes that stock prices follow the Geometric Brownian Motion 

(GBM), in which the conditional distribution of stock (continuously compounded) 

returns is normal. Such conclusions are qualified, though, by However, empirical 

evidence, which indicates that biases, such as the high level of kurtosis and non-zero 

skewness found in stock return distributions, are embedded in this assumptioncannot be 

discounted as influencing factors. As a result, Consequently, observable market options 

prices observed in the market, relative to the Black-Scholes model, generally exhibit 

tend to manifest in certain patterns, such as the volatility smile and the term structure of 

volatility effects. 

One of an important and A widely adopted remedy toward this issue is holds that 

the conditional variance in the underlying process is stochastic or time varying, where 

the asset (unconditional) returns distribution displays in skewness as well as in addition 

to leptokurtosis. Along In this vein, the GARCH (Generalized Autoregressive 

Conditional Heteroskedasticity) -type of processes are discrete-time models able to 

capture the phenomenon of stochastic changes in volatility over time. Under the 

GARCH framework, Duan (1995) applies the concept of locally risk-neutral valuation 

relationship to develop an option pricingoption-pricing model, thereby and solvesing 

the option price by large sample simulation methods. 

The complication of option pricing under the GARCH process is largely 

attributable mainly due to its path-dependent characteristics,. which cause When 

pricing American-style options, tthe resulting non-recombined effect leads to both an 
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exponential increase in the nodes of the lattice model and their associated temporal 

stepsthus the number of nodes in the lattice model grows exponentially along with the 

increase of time steps when pricing American-style options. Realizing Cognizant of 

this complexity, Ritchken and Trevor (1999) developed an efficient lattice algorithm to 

price, in particular American styleAmerican-style options, under the discrete-time 

GARCH process. Further, Cakici and Tapyan (2000) provide a more efficient method 

by modifying the modified Ritchken and Trevor’s (1999) model, and they point out 

thus highlighting a faster that the convergence rate in combination with a more efficient 

is faster and the computational time is more efficient under their modified method. 

Although Attractive as the GARCH processes may beare attractive, however, 

they are not unable to account for describe the occasional and large discrete any 

changes embedded in asset price behaviors. An alternative model, that can capable of 

captureing the fat-tail effect and skewness in the return distribution caused by the 

occasionally large movements in asset price, is the jump-diffusion process. Merton 

(1976) proposed a jump-diffusion option pricing model, where a Poisson jump process 

is added to the Geometric Brownian Motion for the underlying asset price. The 

jump-diffusion model is based on the assumption that stock returns are generated by a 

mixture of processes, which includesing small, continuous, incremental fluctuations to 

prices movements generated by a Wiener process, and large, infrequent price jumps 

pertaining to nonsystematic risk,.  generated by a Poisson processA Poisson process 

generates the latter. In particular, tThe jump process is used to specifically describe the 

abnormal price variations vibrations in price due to the arrival of important new 

information pertaining to about the financial market that turn out has more than a 

marginal effect on price. The model can provide an explanation for empirically 

observedable distributions of stock price changes that exhibit skewness, leptokurtosis, 

and fatter tails in both sides, relative to the lognormal assumption in the Black-Scholes 

model. 

Besides Merton (1976), Cox and Ross (1976), and Ahn and Thompson (1988) 
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also derive option pricing models by assuming discontinuous jump processes for the 

price of underlying assets. Their models are similar comparable to Merton’s (1976), 

insofar as they that can provide a reasonable explanation for underestimation of the 

observations that prices of out-of-money and close to maturity options are 

underestimated . They also facilitate comparable evaluations of and the effectiveness of 

short-term hedging strategies based on the dynamic portfolio adjustment, suggesting 

they are is overestimated when associated with conventional pricing models.. 

The Merton’s (1976) model is a quasi-closed form model for pricing European 

options. In order tTo price a wider range of options, Amin (1993) developsed a 

discrete-time lattice model, which although derived is rigorously extended from the 

Cox, Ross, and Rubinstein’s (1979) binomial tree, also marks an extension of its 

analytical capacity. Amin focuses on what happens when the underlying asset follows 

the Merton’s jump-diffusion process. He assumes that the stock price can move up or 

down by one tick in each discrete period, as was postulated by as the Cox, Ross, and 

Rubinstein’s (1979) model (in each discrete period, [where a tick is the minimum 

possible change in the stock price)]. However, the asset price can also change on 

account for of a rare event (jump). Therefore, he also permits the underlying asset price 

to change by multiple ticks in a single period. This multiple-tick jump is the discrete 

time counterpart of the continuous time jump component. Based on the risk-neutral 

valuation argument and the assumption that the jump risk is diversifiable, his model is 

demonstrated to be able to weakly converges with to the theoretical option values under 

some mild regularity conditions. 

Recently, Chang and Fu (2001) investigated the option pricing on traded assets, in 

settings where when either the underlying asset follows a jump diffusion process, or the 

volatility of the underlying asset is assumed to be stochastic. They extended the 

literature by combining the transformation technique of Hilliard and Schwartz (1996) 

and the discrete-time jump-diffusion model of Amin (1993), yielding to develop a 

bivariate binomial tree model. Furthermore, Kou (2002) offers a double exponential 
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jump-diffusion model for the purpose of option pricing. He assumes the asset price 

follows a Brownian motion plus a compound Poisson process, with jump sizes 

registering as a doubled exponential increase in distributionbeing double exponential 

distributed. Under the assumption, the model can explain about the asymmetric 

leptokurtic feature and the volatility smile effect in options markets. Moreover, it can 

lead to analytic solutions to many option-pricing problems, including plain vanilla 

options, standard interest rate derivatives, and some path-dependent options. 

Among the stochastic volatility models, the GARCH-type of model is one of the 

most comprehensive and popular widely adopted models used to capture smooth 

persistent changes in volatility. However, it is not able to explaining the large discrete 

changes embedded in asset returns. A tractable credible alternative is to incorporate a 

jump process into a GARCH-type model, and indeed, researchers have explored its 

possibilities. Jorion (1988) combined an ARCH model with a jump component to 

empirically examine foreign exchange rates and stock returns.  SimilarlyLikewise, 

Vlaar and Palm (1993), and and Nieuwland, Vershchoor, and Wolff (1994) adopted a 

constant jump intensity-GARCH model to capture foreign exchange rate dynamics. 

Furthermore, Lin and Yeh (2000) modify the Jorion’s (1988) model to derive a new 

jump-diffusion-GARCH model, and provide empirical tests on the Taiwan stock 

market to examine whether discontinuous time paths exist or not. In their empirical 

studies, both Jorion (1988) and and Lin and Yeh (2000), all found that the combined 

models could provide a better explanation for the behavior of financial asset prices. 

Recently, Duan, Ritchken, and Sun (2004) tested the GARCH-JumpGARCH-jump 

model using the S&P 500 data as a research sample. Their research and shows that the 

inclusion of jumps significantly improves the fit of historical time series of for the S&P 

500 data. In option pricing, Duan, Ritchken, and Sun (2006) propose a new 

GARCH-jump model which takes the correlated systematic jump into account and 

solves option prices by simulation approaches. However, to the best of our knowledge, 

there is currently no a model available that can value American styleAmerican-style 

Comment [PEH1]:  CHECK: Unclear. 
Should it read something instead such as, “the 
working assumption of this model is that it can 
explain the asymmetric…etc”? 

Comment [PEH2]:  CHECK: this is the 
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something that is large is less discrete than a 
smaller entity? Perhaps use of “and/or” as a 
linkage point might clarify the intended 
meaning? 

Comment [PEH3]:  CHECK: They were 
able to solve option prices by simulation 
approaches because they had already taken the 
correlated systematic jump into account? If not,
this sentence would be better served by 
breaking down into separate, clear 
components. 
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options. Such a model would need to be capable of capturing the dependency of those 

options that depend on an underlying asset, with respect to both a under a GARCH 

process with and a jump component included is still lacking. 

The purpose of this paper is to develop a discrete-time option pricing model 

which allows the underlying stock prices to follow a mixture of GARCH process and 

jump process. To this end we combine the lattice algorithms of GARCH model of 

Ritchken and Trevor’s (1999) GARCH model and the discrete-time tree of 

jump-diffusion model of Amin (1993).  to derive aAn integrated GARCH-jump option 

pricing model is thus attained., The new model which provides us an efficient 

discrete-time lattice framework to price—, in particular, American styleAmerican-style 

options. It is also demonstrated that the model can provide more greater degrees of 

freedom to explain the skew feature of the stock returns distribution and capture the 

volatility smile and term structure of volatility effects on the options market. At the 

same time, the new GARCH-jump model, which containings several nested models as 

degenerated cases, provides us with an efficient tool to conduct empirical tests on 

options pricing. 

The remainingder of this paper is organized as follows: iIn Section II, we 

construct a generalized lattice model under the GARCH-jump process and discuss its 

adaption and degeneration to the nested models. In Section III, we derive option pricing 

procedures under from the GARCH-jump lattice model. In Section IV, we proceed 

produce numerical ansalyses for the GARCH-jump lattice model in pricing options, 

and then consider its convergence behavior towards the nested models. Section V is the 

conclusion of this paper. 

II. THE LATTICE MODEL WITH GARCH AND JUMPS 

1. General Framework 

Suppose that the price of the stock at time t, under the risk-neutral measure Q, 
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with the time increment ∆t, follows the following generalized GARCH-jump process: 
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In the above specifications, rf is the risk-free interest rate, and mt and ht denote the drift 

rate and the variance of the stock price process at time t. Xt is a compound Poisson 

normal process, which is a mixture of a standard normal process Zt and a Poisson jump 

process Jt, with the jump intensity of λ(∆t), and the jump magnitude following a normal 

distribution, whose mean and standard deviation, μJ(J (ht,∆t) and σJ(J (ht,∆t), are 

assumed to be generally dependent on ht and ∆t. Kt denotes the average rate of jump 

plus 1. 

The variance process of the stock price returns is assumed to follow the 
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is the standardized innovation of the stock price return process and 

( ) ( ) ( , ),Q
t J tE t t h tλ μ= Δ Δ ΔX  

2 2( ) 1 ( ) ( ( , ) ( , )),Q
t J t J tVar t t h t h tλ μ σ= + Δ Δ Δ + ΔX  

are the meanis the mean and variance of the compound Poisson normal process, tX ,; 

under the risk-neutral measure Q. 

If the NGARCH process is considered, the variance process becomes: 

( ) 2
0 1 2, , ( 1) ( , ) ( ( , ))Q

t t t t t t t t tf h t t h t h t h t v c h tν β β β+Δ +ΔΔ = Δ + − Δ + Δ Δ − Δ .      (3) 

The variance structure imposed in Equation (3) is a more general nonlinear asymmetric 

GARCH (NGARCH) model than those used by Engle and Ng (1993) and Duan (1995). 

The nonnegativenon-negative parameter ( , )Q
tc h tΔ  signifies a negative correlation 

between the innovations of the stock price return and its conditional volatility under the 

risk-neutral measure Q. To follow the NGARCH process, the parameters have some 

restrictions with a typical GARCH process, which include 00 >β , 01 ≥β , and 

2 ( , ) 0th tβ Δ ≥  to ensure the positive conditional volatility. 

Based on the Amin (1993) and Ritchken and Trevor’s (1999) setting, given 

ln( )t ty S= , the logarithmic stock price process of t ty +Δ , with an increment of time tΔ , 

can be approximated in a lattice space as 

t t t ny y jγ+Δ = + ;  0, 1, 2,...j = ± ± ,                                   (4) 

where nγ  is the size of changes in the stock price return to be defined later, and j 

denotes the index of the number of possible ticks changed in the stock price return for 

the GARCH-jump process. 

In the lattice model, we assume that the stock price changes can be driven by a 

local component and a jump component, where the “local” means the variation of the 

stock price follows the assumption of a diffusion process, and the “jump” means that 

the stock price can change to an arbitrary level, either within or beyond the local change 
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levels. According to the assumption in Amin (1993), the jump risk is diversifiable and 

is not priced in the market, and the local and jump changes are mutually exclusive1. In 

oOur model makes allowance for the simultaneous occurrence of both kinds of price 

fluctuation, we further permit both of the two types of price changes can occur 

simultaneously. 

                                                 
1 Amin (1993) permits the two price changes are to be mutually exclusive for the expositional 
convenience. In the continuous time limit, it is irrelevant whether they are mutually exclusive 
or not. 

Comment [PEH4]:  CHECK: why? 
Because it is not priced in the market? Is it the 
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Table 7. Early ExerciseEarly-exercise Premium for Duan, Ritchken, and Sun’s 
(2006) Model 

This table shows the early exerciseearly-exercise premium for Duan, Ritchken, and 
Sun’s (2006) model. Parameters for the example are the same as in Table 5, and the 
number of variances for each node is M=50. Assume further that the risk-free interest 
rate 0.05fr = , the initial stock price 0 500S = , the strike price 500X = , and the time 
increment tΔ  isare set to one day. We calculate put optionput-option prices for both 
European (Panel A) and American (Panel B) styles. As we can be seen in Panel C of the 
table, the early exerciseearly-exercise premiums are generally small for the parameters 
used. 

Panel A: European Put OptionPut-option Value 
Time to Maturity Strike 

Price 10 20 30 40 50 75 100 
400 2.9765 6.0054 9.1632 12.5157 16.0488 25.3477 34.7745
450 4.4246 9.9807 16.0585 22.2045 28.2407 42.4718 55.3334
500 17.2640 28.0658 37.3759 45.7430 53.4028 70.2361 84.5885
550 58.7961 67.5285 75.7907 83.5027 90.6982 106.7569 120.5938
600 107.4635 114.5464 121.3153 127.7803 133.9406 148.0681 160.5761

Panel B: American Put OptionPut-option Value 
Time to Maturity Strike 

Price 10 20 30 40 50 75 100 
400 2.9769 6.0068 9.1660 12.5204 16.0560 25.3634 34.8031
450 4.4252 9.9829 16.0631 22.2123 28.2527 42.4982 55.3808
500 17.2650 28.0691 37.3829 45.7551 53.4216 70.2774 84.6615
550 58.7974 67.5333 75.8010 83.5206 90.7259 106.8178 120.7003
600 107.4652 114.5531 121.3299 127.8056 133.9797 148.1534 160.7249

Panel C: Early exerciseEarly-exercise ratio =(American Put-–European 
Put)/American Put 

Time to Maturity Strike 
Price 10 20 30 40 50 75 100 
400 0.01% 0.02% 0.03% 0.04% 0.05% 0.06% 0.08% 
450 0.01% 0.02% 0.03% 0.04% 0.04% 0.06% 0.09% 
500 0.01% 0.01% 0.02% 0.03% 0.04% 0.06% 0.09% 
550 0.00% 0.01% 0.01% 0.02% 0.03% 0.06% 0.09% 
600 0.00% 0.01% 0.01% 0.02% 0.03% 0.06% 0.09% 
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Table 8. Sensitivity Analysis for Early ExerciseEarly-exercise Premium 

This table shows the sensitivity analysis for option early exerciseearly-exercise 
premium with the GARCH-jump model, with respect to jump intensity and magnitude 
parameters. According to Amin (1993), significant jumps obstacle impede the early 
exercise of American options. This reduces the early exerciseearly-exercise premium 
and produces insignificant differences between American options and European 
options. As shown in this table, we can find the proportion of early 
exerciseearly-exercise premium increases with the decreases in the jump intensity. 
Similarly, the proportion of early exerciseearly-exercise premium increases with the 
decreases in the jump magnitude parameter. Parameters used are the same as those in 
Table 3, a399nd M=50. All numbers are in percentageile value of the early 
exerciseearly-exercise value relative to the American option value. 

Panel A: Time to Maturity T=10 days 
Jump intensity λ Mean of 

Jump 
magnitude 

μJ 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

-1 2.015 1.323 0.725 0.261 0.162 0.164 0.166 0.168 0.169 0.171 0.173
-0.75 2.015 1.269 0.629 0.184 0.141 0.143 0.143 0.145 0.144 0.145 0.147
-0.5 2.015 1.212 0.526 0.137 0.122 0.123 0.122 0.123 0.122 0.122 0.123

-0.25 2.015 1.151 0.419 0.109 0.105 0.105 0.104 0.103 0.102 0.102 0.102
0 2.015 1.086 0.310 0.090 0.090 0.089 0.087 0.086 0.084 0.084 0.083

0.25 2.015 1.016 0.201 0.076 0.076 0.074 0.072 0.071 0.069 0.068 0.067
0.5 2.015 0.947 0.124 0.065 0.063 0.061 0.059 0.057 0.055 0.054 0.054

0.75 2.015 0.875 0.078 0.054 0.052 0.050 0.048 0.046 0.044 0.043 0.042
1 2.015 0.800 0.054 0.045 0.043 0.040 0.038 0.036 0.035 0.034 0.033

 

Panel B: Time to Maturity T=50 days 
Jump intensity λ Mean of 

Jump 
magnitude 

μJ 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

-1 5.193 3.825 2.397 1.609 1.260 1.144 1.089 1.045 1.006 0.969 0.935
-0.75 5.193 3.717 2.221 1.412 1.104 1.010 0.961 0.921 0.885 0.852 0.821
-0.5 5.193 3.597 2.029 1.216 0.960 0.884 0.840 0.803 0.770 0.740 0.713

-0.25 5.193 3.465 1.822 1.033 0.829 0.767 0.727 0.693 0.663 0.636 0.611
0 5.193 3.320 1.603 0.868 0.712 0.659 0.622 0.591 0.564 0.540 0.518

0.25 5.193 3.164 1.376 0.725 0.606 0.560 0.527 0.499 0.474 0.453 0.434
0.5 5.193 2.997 1.152 0.605 0.513 0.472 0.442 0.416 0.394 0.375 0.359

0.75 5.193 2.818 0.940 0.502 0.430 0.394 0.366 0.344 0.324 0.308 0.294
1 5.193 2.629 0.750 0.416 0.358 0.325 0.301 0.280 0.264 0.250 0.238
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